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Abstract

DPL-82 is a language for composing programs of concurrently-executing processes. Processes may be all on a
single machine or may be distributed over a set of processors connected to a network. The semantics of the
language is derived from the underlying interprocess communication facility (IPC) and from the dataflow
model of computation. This paper discusses the major concepts of the language, namely nodes, arcs,
connections, tokens, signals, and activations, and presents examples which illustrate the construction of
distributed programs in DPL-82 with internal arcs, external arcs and child arcs. Features for process-to-
processor mapping and dead process restart are mentioned. The paper concludes with some ideas for future
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1. INTRODUCTION

The intention of the research leading to DPL-82 was to implement a programming language to control a

local network of computers as if they were a single computing cngine. There arc many schools of thought with

respect to the choice of an underlying mechanism for control and communication in a distributed program.

One important decision is whether the flow of control or the flow of data is cmphasized. The control-flow end

of the spectrum is characterized in the remote procedure call concept.' Somewhere in the middle of the

control/data-emphasis spectrum is the MIT Actor model of computation, 2 whose underlying metaphor is the

notation of continuation. Current Actor language implementation research is embodied in Lieberman's

language ACT1,' 4 and research is also being done by Clinger on the denotational semantics of Actors, which

includes an Actor language called ATOLIA.5 The data-flow end of the spectrum is characterized in the dataflow

concept.6. 7.8 An important descriptive method arising from dataflow research is the UCLA SARA Graph

Model of behavior.9 Our language, DPL-&2, is a dataflow language. A final, important, distinction is whether

control "remains centralized" after the initial stages of execution of the distributed program. This tends to be

the case in the majority of approaches cited in this paper the exception that proves the rule is the worm

controiprogram research of Shoch*

DPL-S2 derives its emphasis, not from theoretical constructions of language features for parallelism or out of

designs for parallel machines, but from research on operating system mechanisms for interprocess

communication. DPL-32 depends on the the port and message concepts of Rashid's CMU VAX/UNIX

interprocess communication facility (referred to in this paper as the IPC), 11 to implement a interprocess

communication path concept called the arc. The arc is very similar to Morrison's data stream linkage

mechanism1,1 3 and the window concept of the Honeywell HXDP operating system.14' 15 A language very

similar to DPL-s2 is Lesser's Pc
16

There are several veins of distributed processing language research which do not fall directly into the

classifications given above. One is that of languages written &r specific hardware architectures, such as
17Dannenberg's AMPL for the CMU CM* processor and Snodgrass's object-oriented language COLA for the

CMU C.MMP pruccssor. 18 There is much work centered around the ideas of tasking and semaphores, such as

the ADA tasking facility,' 9 STAROS Task Force20 and CLU guardians.21 Finally we must mention Hoare's very
popular CSP language?. csp has a process concept and a compact notation for linking the inputs and outputs

of processes, but unlike most of the work arising out of the experimental systems-building community,

emphasizes processes which are very small computationally, and binds processes very tightly to each other

(each process description is written for exactly one named caller, hence there is no possibility for "libraries" of

sUn ortunatcly that resarch. which was an expailmenta crxecse in distributed %ytem building. has not, to our knowledge, been
a into a so ofhilh-level "worm control structures" that could be cornuctly integratcd intoa language.

I



Page 2 DIL.-82: A Language for uistribuced Processing

processes which could bc "linked" together to form a distributed program).

In DPL-82 a distributed program is composed of processes executing on a number (possibly one) of

machines. Each machine in the network supplies some number of processes. A process is a running core

image, and each computer might store on secondary memory executable core images for some subset of the

different kinds of processes which compose the entire program. The processes are connected with

communication channels supplied by the IPC.* To make a DPL-S2 distributed program or sub-program, user

supplied PASCAL code is embedded in a process description which defines the communications interface

(input and output communication paths) for the process being described, subprocess requirements, and

interconnection of communication paths of subprocess. This description is translated into a complete PASCAL

program for that process which may then be compiled and executed in the DPL-&2 runtime environment. The

runtime environment supplies protocols via the IPC for establishing communication paths between

subprocesses and kaetwork transparent) passing of data on those paths, and a facility to allow a DPL-92

distributed program component (process) on one machine to request the loading of a process on another

machine (which process may in turn cause the loading of additional processes, etc). DPL-82 also provides the

ability to pass parameters to subprocesses at subprocess load-time. For example, the size of various portions

of a distributed program (in terms of number of processes) may be a runtime-computed function of such

parameters.

. PARTICULARS OF THE LANGUAGE

The processes that make up a DPL-82 distributed program are called nodes. Nodes are not to be construed

as processors in a networkt but rather as processes that those processors provide. A node description consists

of a number of sections:

" The name of the node.

* Declaration of its communication links (arcs): the internalarcs, externalarcs and
chi I d-arcs scctioW'.

" Declaraition of(children nodes): the uses section.

* Child startup and initialitation paraneters: the initial ize section.

" Arc interconnection: the connect section which conains arc-to-arc pairs marked by arrows (->)

*A me cann tl whether a liven amwcts is to mother pio in the sine machine or to a pin on another nachine on the
network. Ths is a property of the IPC mmchanan. rwtL-& is. in effedt, a prognuming kluage nde out of a set of protocols and
agilhti dependem on this ponxlur inuprcm eomununikadon nm&Acnamn

"Throughout the paper. nn.keywords and code are set in this typeface.

, .-s'-
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" Startup-timc-only computaion: the to-.istant i ate section. and

" aCtiation conditiuns: the activate section which controls the handling of tokens, signals and
child processes thereafter.

21. Arcs

The communication links between nodes are called arcs. Arcs are implemented with IpC ports.* A node,
through its DPL-82 description, may declare a variety of input and output arcs. Arcs transmit tokens and

signals. A token, modelled after the concept of a token in dataflow networks,6 is a typed data object. A signal

is a string. Tokens and signals are communicated by IPC messages.

There are three sorts of arcs:

" An internal arc is a connection between a parent node and a child node. The actual connection is
made by the parent. The parent is the pi"cess which starts a given (child) process, whether or not
the parent process is on the same machine as the child process.

" An external arc is a path into or out of a node, which is declared inside that node, but whose
connections are set by the parent of the node.

" A child arc is declared by a child node, and is connected to a sibling of the child by the parent
node, but is then subsequently reconnected by the child to one of its children. Tokens or signals
subsequently passing along this connection do not go to the child, but go directly to the child's
child from the originator of the arc or signal.

These three varieties of input and output arcs provide distributed processing analogues to expressions,
subroutines and main programs in uniprocessing languages. A computational process with external arcs is

like an expression." A child process which configures a sub-network of interconnected nodes and assciates

unconnected arcs of the sub-network with child arcs is like a subroutine. Finally, a node with no external arcs
that creates a network of child nodes (and may connect itself to that network with internal arcs) is like a main

program.

2.2. Starting nodes

The in i t i al i ze statement loads a process and provides it with parameters. For example:

(for i from I to 5 (initialize node Trafficl.ight(iXi]))

sars up five TrafficLights. The first use of i (in parentheses) refers to the particular instance of

OA Pwisfte s nitalo. of which@ prca my own wavmL to which data ny be ent i the &M o menas.

T1ia akip is W18 ap. gien work atch m gat of Arvind "Itich 'akcs eapreamm in a funclioxul language and "flattens" them
imo daflow networkS.
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Tr af f i c L i glh t being loaded. The second use (in brackets) is a intcger-valued parameter being passed to

that TrafficLight instance.*

One can start a process on another machine with a statement like:

(initialize node Correlator on-host "CAD-VAX")

which says to load a process whose core image is stored on file name Correl ator on the processor whose

symbolic local net address is "CAD-VAX".**

2.3. Connecting nodes

The - > statement makes connections between nodes. For example:

(-> philosopher[4]:hand fork[5]:handle)

connects phi 1 osopher number four's hand to fork number five's handle.

2.4. Activation conditions

The remainder of the node description is taken up by the activation conditions, which allow tokens and

signals to be received and transmitted, and other actions to be taken such as node self-termination and child

node restarting. These may be contingent upon signal and token arrival, timeouts, internal state of a user's

PASCAL code, and boolean combinations of the above.

The following DPL-92 activation condition-action pair detects the death of a process and restarts it:

((i s-dead somenode) (restart somenode))

This is a primitive restarting capability, whose only effect is to start a process of the same name and give it

the connections of the dead process***. Nothing in the language deals with the question of restoring the

internal state of a lost proces.

3. SOME EXAMPLES

We will now present.a number of simple nodes to illustrate the concepts discussed above. It is important to

note that these nodes are not very computation-intensive and that the real economy of this language comes

with nodes which do more work. Also, we will not, in this paper, present any timing measurements for

We m p kbmhewe aM each Tr aff i c L i gh t know what i's nsme is with sp todte parenL A child node doa
mot atomuaally know it's "Rm" in DPL4M

aW c dismn a demin for a mom enerraenv* pe'worti svem mechaniun clled the I1TLI!R for remotely allocasins

""ie abillty o( connectio to mrvive p, M desth iun a popey of ihe w mcchanim.
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,stabishing connctCionls ()r passing tokens or signals, and we will not consider thc problems of optimal

procCss-to-processor mapping. This is partly due to space limitations, and partly due to the fact that the

primary thnst of this research has been to achieve correct mechanisms in "2rms of functionality and linguistic

expression. Future research, on a successor to DPL-82 (DPL-83?), may be concerned with mechanism

optimization and resource allocation issues.*

3.5. Nodes with inputs and outputs

The simplest kind of interesting node must communicate with and start other concurrently processing

nodes in order to perform a computation. To do this, the node must declare input and output arcs and must

include in its description specific commands for starting up other nodes. Let us concieve of a node which

performs the x2 function called xsquared, and another node which utilizes xsquared in a simple parallel

computation, which we will call p1 us2xsq. It will present two xsquared nodes with numbers, and sum

and print their results.

(node xsquared
external-arcs ((integer inx) -> (integer outx))
procedure xsq (inx: integer: var outx: integer);

begin
Writeln("Toto. inx is ", inx:1. *1"):
Outx :- inx * inx;

end:
activate ((tokens-available)

(apply xsq to [inx. outxf)
(terminate)))

"NeISOR and Spector a worked on low-level apimizations of remote procedure call. an alternative method of suleturing
diotibuted comnputations. Nhyant. Ou and Arvind have rmserchcd h iuus of distributed coniputer msource allocation from the

qml4ig%. point of view, and te rated km of t optimal procewiolwocczor mapping from the program's point of
vew..
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(node plus2xsq
internal arcs

((integer resultl result2) ->

(integer xI x2))

procedure plusx12 (var xl, x2: integer):
begin xl :- 3; x2 := 4; end;
procedure getresults (rI. r2: integer):
begin

writeln("The result is ". (rl+r2):l. '.");

end;

uses (uses array[2 max 2) of node xsquared)
initialize

(initialize node xsquared[l])
(initialize node xsquared[2J)

connect (-> xl xsquared[l]:inx)

(=> x2 xsquared[2]:inx)
(=> xsquared[1]:outx resulti)
(=> xsquared[2]:outx result2)

to-instantiate (apply plusxl2 to rId. x2])
activate ((tokens-available)

(apply getresults
to [resultI, result2])

(terminate)))

This may be pictured as in Figure 3-1.
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Fgum 3-1: A nodc illustrating internal arcs
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When executed, p I us 2xsq gives the following results:

$ plus2xsq
roto, inx is 41
Toto, inx is 31
The result is 25.

The node that started the node that owns a given set of input arc . not know about these internal arcs.

The only way that information can flow out of the purview of the i ial arc owner and into the purview of

the node that starts up the owner, is if the internal arc owner co! :b a child arc to an internal arc (see

below).

We can illustrate the use of child arcs with the node xfourth, which has one input child arc and one

output child arc. xfourth outputs the value of the input raised to the fourth power. xffourth is shown in

Figure 3-2.

resut

Figure 3-2: A node illustrating child arcs

The code for xtoutrth, like a subroutine, hides the implementation of the arithmetic operation as a

subnetwork of concurrently executing nodes. This subnetwork is analogous to the lines of code that define a

subroutine body.

. .. i _ _ _ .
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(node xfourth
child-arcs ((integer x) -> (integer result))
var root: string; sub: integer;
uses (uses array[2 max 2)

of node newxsquared)
initialize

(initialize node newxsquared[l])
(initialize node newxsquared(2])

connect (> x newxsquaredCl]:inx)
(=> newxsquared[(]:outx

newxsquared[2]: nx)
(=> result newxsquared[23:outx)

activate ((signal-from parent halt)
(slow s-ignal-to children

[newxsquared[1),newxsquared[2])
halt)

(terminate)))

We can exercise xfourth with the following node, fourthstream, which reads integers from the

terminal and prints out their fourth powers. When the end of the input stream is reached, fourthstream

terminates after sending a halt signal to xfourth. xfourth will then signal its xsquared subordinates

to halt, and terminate itself. The xsquared nodes will terminate themselves, and the distributed

computation will conclude.

The definition of xsquared must be modified slightly to catch the signal. We will call the new version

newxsquared. newxsquared also does not terminate after the first set of input tokens, but rather cycles

indefinitely until the hal t signal has been received.

3.6. Cyclic checking of activation conditions

The conccpt of cycling is very important, The default action of the node is to wait for IPC messages which

represent tokens or signals, then evaluate the activation conditions, which usually refer to token or signal

arrival events. However note that in fourthstream the first activation condition refers to a side-effect

generated by the next activation conditions. This side-effect emanates from the input_st ream procedure,

and signals that the end of input has been reached. "lhc crcation of the side-effect is dependcnt on the user's

typein, and not on message events (although it strictly follows the last result tokcn arrival). Hence the

detection of the sidc-cffcct does not involve waiting for a message event. If we chose the default action of

waiting forever for a message event, then the first activation condition would never be tested.

Thc solution chosen here is to modify the amount of time we arc willing to wait for message events. This

time is chosen so that we don't needlessly check the activation conditions while actually waiting for messages,
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and so that we don't wait too long, when we aren't expecting messages, to get around to checking the

non-message-event-related activation conditions. When the user is typing in numbers. fourthstream

might catch a "timeout" or two before receiving the response, but this is harmless. When the user types in the

number -1, indicating cnd-of-input. the variable EOS is changed to true. The node will wait at most 500

milliseconds, when EOS condition is true, to signal "end of computation" and terminate.*

(node newxsquared
external-arcs ((integer inx) -> (integer outx))

procedure xsq (inx: integer; var outx: integer);

begin outx :* inx e inx; end;

activate ((tokens-available)
(apply xsq to Cinx, outx]))
((signal-from parent halt)(terminate)))

*Program termination in dirihuted ssyxcms is in general a hard question. AVr by Gostelow addresses this issue directly. and
Nelbon discu'xcs it in lerms of verifying thc completion of a remote procedure call.
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(node fourthstream
internal-arcs ((integer result) *> (integer x))
var EOS: boolean;
function input-stream (var xl: integer):boolean;
begin write(">")- readln(xl);

if (xI - -1)
then begin EOS :-true;

inputstream :- false-

end
else input-stream :- true:

end;
procedure initstream (var x: integer);
var toss: boolean;
begin EOS := FALSE;

toss :- input-stream(x);
end;
procedure output-stream (result: integer);
begin

writeln("The result is ", result:2, ".):

end-
uses (uses node xfourth)
initialize (initialize node xfourth)
connect (-> x xfourth:x)

(-> xfourth:result result)
to~jnstantiate (apply initstream to Cx])
cycle.timejis (- 500)
activate ((- EOS)

(slow signal-to children
[xfourth] halt)

(terminate))
((tokens-available)
(apply output-stream to [result])
(test input_stream [] ? Cx] : (1)))

We have now used child, external and internal ars. fourthstream's execution network is pictured in

Figure 3-3. The following is a sample of how it behaves:

S fourthstream
i~ >2

The result is 16.

>5
The result is 625.
' -l
s
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4. FUTURE RESEFARCHt

We intend to implement abstractions of the features of this language in Edinburgh MIA an interpreted,

typed functional language designed for research in denotational semantics t0 as a first step toward the

development of a power-domain based31 semantics of the underlying iPC facility and the conceptual fatures
of the language.

There are some intriguing possibilities for the design of a microprocessor or microcoding of a processor
whose instruction set is optimized towards message-passing and distributed programs whose underlying
control construct is the continuation. The notion of a continuation is to be found in Actor semantics, 2 the

notion of the RTRANSF ER in remote procedure call, 1 and in denotational semantics.3 2

whe concept of constraint networks may find a home in the distributed processing context with datafliow-

like languages, such as a successor to DPI. -L which are extended to include the notion of bi-directional aes

(now simulatable with pairs of input and output arcs) and appropriate relaxation procedures.3 3 34
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